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Abstract. The fundamental goal of 3D reconstruction in Hand-Object
Interaction (HOI) is to recover both the geometry and appearance of the
hand and the manipulated object from visual observations. While tra-
ditional methods rely on category-specific priors, recent advancements
aim for category-agnostic reconstruction. In this report, we review the
evolution of 3D reconstruction in HOI, starting with the theoretical foun-
dations essential for understanding these methodologies and tracing how
the field has advanced towards generalized solutions. In particular, we
focus our technical review on two representative frameworks: HOLD and
BIGS.
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1 Introduction

3D reconstruction in Hand-Object Interaction (HOI) plays a fundamental role in
immersive applications, ranging from Augmented and Virtual Reality (AR/VR)
to intuitive Human-Computer Interaction (HCI). However, this task presents a
unique challenge arising from the interaction itself: mutual occlusion. The hand
dynamically occludes the object, while the object simultaneously blocks the view
of the hand, complicating the recovery for both entities. To address this, various
reconstruction methodologies have evolved, each proposing distinct mechanisms
to resolve these occlusion ambiguities.

While earlier approaches relied on pre-scanned templates to compensate for
such missing information, real-world scenarios necessitate category-agnostic ca-
pabilities—reconstructing arbitrary objects without relying on pre-scanned tem-
plates. This report provides a bottom-up survey organized as follows: We first
establish the theoretical foundations in Sec. 2. Then, we review the progres-
sion from isolated hand reconstruction in Sec. 3 to joint hand-object systems in
Sec. 4. Finally, in Sec. 5, we analyze state-of-the-art category-agnostic methods,
specifically HOLD [8] and BIGS [14].
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2 Preliminaries

This section introduces the core concepts of 3D representation and paramet-
ric hand modeling that serve as the building blocks for modern reconstruction
methods.

2.1 3D Representation Methods

We categorize 3D representations into two primary streams: Explicit and Im-
plicit.

Explicit Representations: Point Cloud, Mesh, and 3DGS. Explicit rep-
resentations describe the scene using discrete geometric primitives.

– Point Cloud: A point cloud is the simplest representation, defined as an
unordered set of points P = {pi ∈ R3}Ni=1. However, point clouds lack
topological connectivity and do not define a continuous surface, limiting
their ability to model solid geometry.

– Mesh: A mesh explicitly defines the surface topology via a graph struc-
ture M = (V, E ,F), consisting of vertices, edges, and faces. Unlike point
clouds, meshes create a continuous surface, enabling the representation of
solid geometry and texture. Crucially, they serve as the standard format for
parametric models like MANO [18].

– 3D Gaussian Splatting (3DGS): 3DGS [10] represents the scene as a
collection of 3D Gaussians. The influence of a Gaussian at a query point
x ∈ R3 is defined as:

G(x) = o · exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1)

where µ ∈ R3 is the mean position and o ∈ [0, 1] is the opacity. To facilitate
convergence, the set of Gaussians is initialized using a sparse point cloud
derived from Structure-from-Motion (SfM) [20]. To ensure the covariance
matrix Σ ∈ R3×3 remains valid (positive semi-definite) during optimization,
it is decomposed into a rotation matrix R and a scaling matrix S:

Σ = RSSTRT (2)

Here, S ∈ R3×3 is a diagonal scaling matrix and R ∈ SO(3) is the rotation
matrix derived from a normalized quaternion q ∈ R4.

For rendering, these 3D Gaussians are projected onto the image plane. The
resulting 2D covariance matrix Σ2D ∈ R2×2 is approximated using the Ja-
cobian of the projective transformation J ∈ R2×3 and the viewing transfor-
mation matrix W ∈ R3×3:

Σ2D = JWΣWTJT (3)
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Finally, the pixel color C ∈ R3 is computed via α-blending of N Gaussians
sorted by depth (front-to-back):

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (4)

where ci ∈ R3 is evaluated from the spherical harmonics based on the view-
ing direction derived from W , and αi ∈ [0, 1] is obtained by multiplying the
learned opacity parameter o with the 2D Gaussian probability density at the
specific pixel coordinate.

The efficient tile-based rasterization pipeline enables real-time rendering,
while its differentiable nature allows for end-to-end optimization of the Gaus-
sian parameters. Furthermore, the explicit nature of the representation fa-
cilitates deformation, establishing 3DGS as the foundational framework for
BIGS [14].

Implicit Representations: SDF and NeRF. Implicit methods define the
scene as a continuous field learned by a neural network. Instead of storing discrete
primitives, the network predicts geometric properties (e.g., distance or density)
for any query point in space.

– Signed Distance Function (SDF): An SDF maps a spatial query point
x ∈ R3 to a scalar value f(x) ∈ R, representing the signed distance to the
nearest surface S ⊂ R3:

f(x) = s(x) ·min
y∈S

∥x− y∥2 (5)

where s(x) ∈ {−1, 1} is the sign function indicating whether x is inside
(negative) or outside (positive). Consequently, the object surface is implicitly
represented as the zero-level set of this function, defined as {x ∈ R3 | f(x) =
0}. Crucially, this continuous representation can model arbitrary topologies.
This flexibility is key to achieving category-agnostic reconstruction, serving
as the foundational framework for HOLD [8].

– Neural Radiance Field (NeRF): NeRF approaches scene representation
by optimizing a continuous volumetric function (see Fig. 2 in Mildenhall et
al . [13]), approximated by a Multilayer Perceptron (MLP). Mathematically,
this network approximates a mapping F :

F : (x,d) → (c, σ) (6)

where the input consists of a 3D coordinate x ∈ R3 and viewing direction
d ∈ S2, and the output includes the emitted color c ∈ R3 and volume density
σ ∈ R≥0.

https://arxiv.org/pdf/2003.08934#page=5
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An image pixel is rendered by integrating along a ray r(t) = o+ td:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt (7)

Here, C(r) ∈ R3 is the final predicted pixel color, and tn, tf denote the near
and far bounds of the ray. T (t) denotes the accumulated transmittance,
defined as:

T (t) = exp

(
−
∫ t

tn

σ(r(s)) ds

)
(8)

which quantifies the probability that the ray travels from tn to t without
hitting any particles. In practice, this integral is numerically approximated
via stratified sampling.

While NeRF achieves photorealistic rendering, this requirement for dense
network evaluations along every ray results in high computational costs,
contrasting with the real-time capabilities of explicit methods like 3DGS.

2.2 Parametric Hand Model

To obtain a robust and controllable 3D hand representation, the MANO model [18]
is widely utilized in the literature. Constructed from a large-scale dataset of 3D
hand scans, MANO captures the statistical variations of human hands using
Principal Component Analysis (PCA). It maps low-dimensional shape parame-
ters β ∈ R10 and pose parameters θ ∈ R16×3 to a high-dimensional hand mesh
Mh ∈ R778×3 and 3D joint locations J ∈ R21×3 via Linear Blend Skinning (LBS):

Mh(β, θ) = W (TP (β, θ), J(β), θ,W) (9)

Here, the joint locations J are linearly regressed from the shaped mesh vertices.
W denotes the skinning function (LBS), which deforms the template mesh TP

according to the pose θ and the adapted joints J , utilizing fixed skinning weights
W.

Figures 6 and 7 in Romero et al . [18] show scanned hands alongside their
corresponding MANO mesh representations, demonstrating the template’s ca-
pability to capture diverse hand shapes and poses across different subjects.

The key advantage of this representation is that it reduces the complex prob-
lem of 3D hand reconstruction to the regression of compact parameters β and
θ. By leveraging the learned statistical knowledge, biologically plausible dense
mesh and joint locations can be recovered even from partial observations.

3 3D Hand Reconstruction

The most fundamental challenge in this domain is 3D hand reconstruction. This
task aims to recover two primary attributes from a single input image I: shape
and pose.

https://arxiv.org/pdf/2201.02610#page=8
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Mathematically, the reconstruction process can be formulated as a mapping
function ΦH that estimates the mesh vertices M ∈ RV×3 and the 3D joint
locations J ∈ RK×3 from the image:

ΦH(I) → (M̂, Ĵ) (10)

where V denotes the number of mesh vertices representing the hand shape, and
K denotes the number of joints representing the hand pose.

To address this task, contemporary approaches typically employ an encoder-
decoder architecture. Powerful backbones, such as Vision Transformers (ViT) [7],
are utilized to encode the input image into latent features, which are subse-
quently decoded to recover the target mesh vertices M and joint locations J .
While sharing this general structure, different approaches utilize different encod-
ing and decoding strategies. Methods like METRO [4,5,11,12,21] focus on direct
regression, where the network directly predicts the 3D coordinates of the mesh
vertices M from the latent representations. Subsequently, the 3D joint locations
J are obtained from these vertices using the standard joint regressor Jreg, for-
mulated as J = JregM . In contrast, methods like HaMeR [3,6,15,17,19] adopt a
parametric regression strategy; they first estimate the MANO parameters (β, θ)
and subsequently derive the dense mesh and joints via the differentiable MANO
layer (see Fig. 2 in Pavlakos et al . [15]).

To quantitatively evaluate the reconstruction quality, two standard metrics
are employed: MPJPE for the pose and MPVPE for the shape.

MPJPE (Mean Per-Joint Position Error) assesses the skeletal pose accuracy
by calculating the average Euclidean distance between the estimated joints Ĵ
and the ground truth joints Jgt:

MPJPE =
1

K

K∑
k=1

∥Ĵk − Jgt,k∥2 (11)

MPVPE (Mean Per-Vertex Position Error) assesses the mesh surface quality
by calculating the average Euclidean distance between the estimated vertices M̂
and the ground truth vertices Mgt:

MPVPE =
1

V

V∑
i=1

∥M̂i −Mgt,i∥2 (12)

In standard benchmarks, these metrics are often computed after Procrustes
Analysis (PA). PA aligns the predicted structure to the ground truth by adjusting
its rotation, translation, and scale. The resulting metrics, PA-MPJPE and PA-
MPVPE, focus purely on the reconstruction quality by excluding errors from
global misalignment and size differences.

https://arxiv.org/pdf/2312.05251#page=3


6 K. Gwak

4 3D Hand-Object Reconstruction

In daily life, hands are rarely observed in static isolation; their most natural state
is dynamically interacting with the physical world. Consequently, the scope of
3D reconstruction naturally extends from isolated hands to the joint recovery of
the hand and the object it manipulates.

Mathematically, this task aims to map a single input image I to the hand
components (mesh Mh, joints J) and the object mesh Mobj simultaneously:

ΦHOI(I) → (M̂h, Ĵ , M̂obj) (13)

To address this task, RHO [1] was proposed for rigid object reconstruction in
in-the-wild scenarios. While RHO utilizes a template mesh, the variable nature of
unconstrained in-the-wild environments necessitates estimating the object scale
s ∈ R in addition to the standard 6D pose (rotation R ∈ SO(3) and translation
T ∈ R3). The reconstruction is achieved by transforming the template Tobj as
follows:

M̂obj = s ·R · Tobj + T (14)
Moving beyond rigid bodies, ARCTIC [9] addresses a more complex category:

articulated objects (e.g., scissors, laptops). Since ARCTIC operates with pre-
defined, precisely scanned object models, scale estimation is omitted. Instead,
the focus shifts to modeling the object’s articulation. The framework predicts
an articulation parameter ω ∈ R (i.e., rotation angle) along a specific axis to
dynamically deform the template:

M̂obj = R · Tobj(ω) + T (15)

Figure 4 in Fan et al . [9] shows the ArcticNet-SF architecture. The network
extracts features from an input image via a CNN backbone. It employs separate
decoders to estimate the MANO parameters Θ = {θ, β} and translation T for
both hands. Simultaneously, it predicts the object state Ω ∈ R7, which consists
of the 1D articulation angle ω ∈ R and the 6D rigid pose (rotation Ro ∈ R3 and
translation To ∈ R3). Figure 1 in the supplementary material of Fan et al . [9]
shows the 11 articulated objects included in the dataset. These objects were
pre-scanned to obtain high-fidelity template meshes.

While leveraging strong geometric priors enables these methods to maintain
high precision even under severe mutual occlusion, they inherently rely on the
availability of pre-scanned object meshes, limiting generalization to unseen ob-
jects in the wild.

To quantitatively evaluate the quality of the reconstructed object, the Cham-
fer Distance (CD) is commonly employed. CD measures the geometric similarity
between the estimated object mesh vertices M̂obj and the ground truth vertices
Mgt. It is defined as the average distance from each point in one set to its nearest
neighbor in the other set:

CD =
1

|M̂obj |

∑
x∈M̂obj

min
y∈Mgt

∥x− y∥22 +
1

|Mgt|
∑

y∈Mgt

min
x∈M̂obj

∥y − x∥22 (16)

https://arxiv.org/pdf/2204.13662#page=6
https://openaccess.thecvf.com/content/CVPR2023/supplemental/Fan_ARCTIC_A_Dataset_CVPR_2023_supplemental.pdf#page=1


Category-Agnostic 3D Reconstruction in HOI 7

A lower Chamfer Distance indicates that the reconstructed surface is geometri-
cally closer to the ground truth.

5 Category-Agnostic 3D Hand-Object Reconstruction

Despite the high precision achieved by template-based methods, their reliance
on pre-scanned object models fundamentally limits their scalability in in-the-
wild scenarios where object geometries are unknown. Consequently, the field has
shifted towards category-agnostic reconstruction, which aims to recover the 3D
geometry and appearance of arbitrary objects from visual observations, with-
out prior geometric knowledge. This transition requires solving a more complex
challenge: simultaneously inferring the shape of an unseen object while resolving
the severe mutual occlusions inherent in interaction.

To address this challenge in single-hand scenarios, HOLD [8] proposes a com-
positional implicit neural framework. A key advantage of this approach lies in
leveraging a Signed Distance Function (SDF) for object representation. This
continuous field allows for modeling arbitrary shapes, fundamentally enabling
the category-agnostic reconstruction of unseen objects.

Technically, HOLD integrates separate volumetric fields for the hand (fh),
the object (fo), and the background (fb) (see Fig. 3 in Fan et al . [8]). To align
the dynamic observation space with the canonical implicit representations, the
framework employs specific coordinate transformations: Inverse Linear Blend
Skinning (LBS) for the articulated hand and rigid transformations for the object.
These elements are then composited via a NeRF-inspired differentiable volumet-
ric rendering pipeline. By transforming signed distances into volume densities
and optimizing for photometric consistency, the framework recovers high-fidelity
geometry and texture from monocular video, while simultaneously refining poses
via interaction constraints.

BIGS [14] extends this capability to bimanual interaction scenarios. It em-
ploys 3D Gaussian Splatting (3DGS) to flexibly represent the geometry of arbi-
trary objects in a category-agnostic manner, while significantly improving opti-
mization and rendering efficiency compared to implicit representations. However,
since 3DGS optimization fundamentally relies on minimizing the photometric
error against input images, it inherently fails to reconstruct regions that are
occluded or unobserved in the input sequence due to the lack of supervision.
To bridge this gap, BIGS incorporates a generative prior via Score Distillation
Sampling (SDS) loss [16]. This loss enforces object images rendered from random
viewpoints—including perspectives completely unobserved in the input—to align
with plausible images generated by a pre-trained 2D diffusion model, thereby
reliably recovering the geometry and appearance of unseen regions. For hand
reconstruction, BIGS initializes 3D Gaussians from MANO vertices, leveraging
prior knowledge to ensure rapid convergence. A notable strategy is the optimiza-
tion of a single shared canonical Gaussian set, treating the left hand as a mirrored

https://arxiv.org/pdf/2311.18448#page=4
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version of the right. By mapping both hands to a unified coordinate space, the
framework accumulates visual cues from both instances, allowing visible features
from one hand to effectively compensate for occlusions in the other.

The BIGS pipeline is built upon an explicit 3D Gaussian Splatting repre-
sentation (see Fig. 2 in On et al . [14]). The process begins with Pre-processing,
where coarse meshes derived from a MANO regressor and an object reconstruc-
tor are used to initialize the canonical Gaussians (GH ,GO). The core architecture
employs TriplaneNets [2] (T H , T O) combined with MLPs to decode Gaussian pa-
rameters (e.g., opacity, color) and Linear Blend Skinning (LBS) weights. These
weights are subsequently utilized to deform the canonical hand Gaussians into
the target pose. The optimization proceeds in two stages: a Single-subject opti-
mization first refines each shape individually—utilizing SDS loss to recover oc-
cluded regions—followed by an Interacting-subjects optimization that fine-tunes
spatial alignment via contact regularization to ensure physical plausibility.

6 Conclusion

In this report, we have surveyed the evolution of 3D reconstruction in Hand-
Object Interaction, tracing the trajectory from isolated hand recovery to com-
plex, category-agnostic joint reconstruction. The progression has been funda-
mentally driven by the shift in underlying 3D representations. While early meth-
ods relied on pre-scanned templates to resolve ambiguities, recent advancements
leverage the strengths of neural representations to handle unknown objects. We
highlighted how HOLD exploits the continuity of implicit SDFs to ensure geo-
metric consistency in single-hand grasping, whereas BIGS leverages the efficiency
of explicit 3D Gaussians combined with diffusion priors to tackle the complex
dynamics of bimanual interaction.

Despite these significant advancements, a critical limitation remains: cur-
rent category-agnostic approaches predominantly assume that the manipulated
object is rigid. Specifically, these methods optimize a single canonical geome-
try shared across the entire sequence of input frames, allowing only for rigid
pose transformations per timestep. However, real-world interactions frequently
involve deformable (e.g., squeezing a sponge) or articulated (e.g., using scissors)
objects, where the intrinsic shape changes dynamically. Therefore, a promising
direction for future research lies in extending category-agnostic reconstruction
to non-rigid scenarios. Developing systems capable of recovering time-varying
geometries and topological changes without relying on category-specific priors
represents the next milestone in achieving truly generalized 3D reconstruction.
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